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1. Formulation of the problem. Ve seek a regular solution, i.e.
a solution that is continuous up to second order derivatives of the equa-
tions of motion [1]

*u du v Pu
G T A T oggy X =P g

0%

(1.1)
&y d% %

at points in an anisotropic halfplane y >0 under the following initial
conditions

u (z, Y, O) = u, (2, ¥, v (x, ¥, 0) = vy (2, ?/)* (au/at)o = Uy (z, y),
(Ov/ dt)y = vy’ (2, ¥) (1.2)

and the following boundary conditions:
Tey (2, 0, 1) = A (z, 1), oy (z,0,8) = B(z, 1) (1.3)

The right sides of these equations contain given functions.

2. The Green-Volterra formula. In the general case of anisotropy
we have the Green-Volterra formula

Sgg (U Xy + 0Yy — Xy —0,Y) dadydt=
T

= SS [aP (uy, v3) + v;Q (g, V) — UP (uy, ) — 0@ (uy, v)1dS  (2.1)
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The elastic anisotropic halfplane 1355

Here u,, v, is a solution of Equations (1.1) corresponding to the
body forces Xi, Y,, while the solution u,, v, corresponds to the body
forces X,, Y,; T denotes an arbitrary volume in the xyt space which is
bounded by the surface S with interior normal n

P (u, v) = 0, cos (nZ) -+ T cos (ny) —p -g-—:‘- cos (nt) 2.2
Q (u, v) = Txy co8 (nx) + oy cos (ny) — p %3:- cos {nt)

This formula remains valid even when one of the solutions has a true
strong discontinuity [2].

3. Fundamental solutions. We shall construct some special solu-
tions of the homogeneous Equations (1.1). These will be nonzero within
a characteristic cone whose vertex is at the point (x,, y,, t,) and will
have the required singularity on its axis x = x;, ¥ = y,. We call them
fundamental solutions. Let us introduce the functions

o_nfe—d ¥ ..i‘...) ]
y; —'T( c 053,5 - Lli ’ ;".‘i = dﬂi '

Lij=ab®4-drt—1 (3.1)

o_ (c —d a 7\"5 _ ¢
Wg; =T T '” N 'e;x'"j ’ 7= > — -—-(c"_—_“—d)‘ 1]

Between Gj and Aj there exists the relation

LyLy; — %2 = 0, Ly = di* + aly® — 1 3.9
G=to—t—(z—2) b+ (g —y) by =0 8.2
We specify incident disturbances in the form
2 ] . 2 i
w* = Rei | @ au @k, 0= Rei {Ly@oi® & (63
=1 =1
where
mk"oo _—_—L—__-—-s’ ;:;&j‘ (l)k;’ (k= i, 2): mﬂjoo = % cej’mlj;-t L”‘m”ﬁ
i 3 §

F® = st (020;° + Aoy®) + Loy — chd 3.4)

Forming the solutions [3] for the reflected disturbances under the
condition that the boundary is stress free, and superposing these solu-
tions on the corresponding incident solutions, we obtain the fundamental
solutions uh°, ”k°° These are nonzero in the interior of a character-
istic cone and zero on its boundary and in its exterior. Upon passage
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through the pertinent characteristic surface, lying either within the
cone mentioned above or comprising its surface, the first derivatives of
these solutions suffer a discontinuity. However, as is easily shown, the
kinematic and dynamic conditions of compatibility are satisfied.

4. Estimate of the fundamental solutions near the axis of
the characteristic cone. To make this estimate, we show that it is
sufficient to estimate the function (3.3) for large values of 8., since
only incident disturbances have singularities on the axis of the cone.
Taking into account the branch of A to be chosen for ¢ < a - d [1], and
writing out only the main terms, we obtain

: A
l,-:-M,-iG,-, Mj:[—z—l;%+(*—i)}+l 45’;:12 —-'1] y Lo=a2+d2—62
(4.1)

whereby

MM, =1, M?+M? =5 (o Mpd)d—MPa)+ M =0 (4.2)

From (3.2) we find

' —iMy
8 = —‘2——’34 T=2—Z Y =Y—Yo V=1 —1
i
=2t 4 Mpy* (4.3)
For large 6}- we readily obtain
2 A R4 2 ‘O
ay; :—2 9’2 + 0 (6;7%), @y = "’“Zﬁ‘;‘é’}“{'o(ai‘z)
j=1 1 j=1 17 (4.4)
o_rd I _ D M2 _
4; me’ Il =a+ (c—d)y M; i=12)
Hence
lim (00,°+ Affwg?)= 0, 8; — oo
and for large BJ the main parts of the functions O © and @y, %0 coincide.

Now 1t is easy to estimate the fundamental solutmns We obtam

[+] g -3 d
a? = — c}‘_, MAf Re;,  v° = —2 B Reit;, B =1-TI; (4.5)

531 5’—‘1

or
2

u,° =-c§‘,MA°"r‘ . ol=— MBp XL (4.6)

F=1 i i=1 J
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It is also necessary to estimate the derivatives for large 6 Using
Fquations (3.2) and (4.3) we find

2

o 't — M 2y
2 =3 Midp —— (4.7)
i=l1 j

The same result may be obtained by straightforward differentiation of
the expression for u,® with respect to x. The remaining derivatives can
be estimated in an analogous manner. Omitting the details of the calcu-
lations, we give the final results of the estimates of the solutions and
the corresponding stresses,

a) First fundamental solution. Formulas (4.6) are supplemented by

. .
2 — M 2y H 4 o 2 M2y
on®=d 2 MIAL ——17 ¢, 5,°=— dZ Tt (4.8)
=1 T j=1 M; U
2
2r'y't
[+ (4] !
Txy, == d ZMJ'H]'A;; '——rq——
i=1 i
b) Second fundamental solution
2
- z't - 't
,° = _cz M4 2, o=~ > M; 13,-%% (4.9)
j=1 b i=1 i

The stresses are obtained in the form

z" —-—-M 3/ 2 't — My
6z’ —-dZM”IH AP —— 1, 6 =—d D) M4 ot
=1 T =1 rj
T, =d 2 My I AL EYE (4.10)
=1 rj
¢} Third fundamental solution
2
ul = —c 0 MiAP LY o0 = EM—IB° a4 (4.11)
i=1 i i=1 1
For the stresses we obtain
O, -d2Mn.4°2’y‘ : —.-dEM-IHA°2’y"
=1 r; =1 r
2% — M 2yt
Tay,” = -——dz MJ,—IHJ.AjO i iy t (4.12)

J=1 i

The main parts are indicated in all of the formulas.
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5. Solution of the Cauchy problem for the halfplane. To
solve this problem, we apply the Green-Volterra formula to the sought
solution and to one of the fundamental solutions u,°, v,°. For the region
of integration we take a portion of the space
which is bounded on the one side by the sur-
face S’ of a characteristic cone whose vertex
is at the point (xo, Yo, ty) and, on the other
side (see the figure), by a portion S; of the
plane y = 0, and a portion S, of the plane
t =0, and finally, by a portion of the
cylindrical surface S of radius e that cuts
out the axis of the cone. It is to be under-
stood that S’ is that portion of the surface
of the cone that corresponds to a variation
of 6, in the interval - INa < 8, < INa. Tt
is just on this portion that all of the funda-
mental solutions vanish. On the other hand, taking into consideration
that the latter correspond to zero body-force solutions, we obtain

W BidS +\\ Bedzdr +\| Bidzay +{ Buas =

" S1e Spe Se

-— N (X + 0°Y) dz dy de (5.1)

1

0.

where the index ¢ indicates that at present (up to passage to the limit),
the portion of the aforementioned surfaces that depend on & are used. The
expressions for B, have the form

ou,®
Bi = {0,708 (n2) + Ty,708 (ny) — p g cos (n) ) u +

a G
+ (r,xk"cos (rz) -+ 0y,°c0s (ny) — p -;f‘«— cos (nt)) P —
—_ (vax cos (nx) + Ty cos (ny) — p%c%(nt)) ux’ — (5.2)
— (Tw cos (nx) -+ oy cos (ny) — p —g— cos (nt)) %°

All of the integrals in Formula (5.1) are known, with the exception
of the integral over S.. The integral over S’¢ is zero as a consequence
of the fact that the kinematic and dynamic compatibility conditions are
satisfied for the solutions u,° and v,°. The integrals over S,, and S,
are known by virtue of the initial and boundary conditions. We next show
that the integral over S, in the limit as ¢ -~ 0, is equal to a certain
linear combination of the derivatives of the unknown functions u and v.
On the surface S, we have
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7/

cos (nt) = 0, cos (nx) = %- . cos (ny) = _3:'__’ rt= gt 4 oyt = gt

Setting x' = & cos ¢, ¥y = £ sin ¢, we obtain

t—n (€)
§S B, dS = % {% [(0x,° cos @ + Txy,’sin @) & + (Tyx,°cos @ + 0, sing) v +
e o L
+ (0x €08 @ -+ Tyy sin @) U’ — (Tyz cO8 @ -+ 0y sin @) »;°] dl} dt (5.3)

where n(e) and & vanish together, and Le is a circle of radius e.

Since the unknown solution is regular, we have, for example,
u(xv y? t) = u(x0+ ECOSCP, yo“}' ESinCp, t) ==
" Ou ou .
= U (zOv Yo t) + 8[0—%COS(P+—@;SlDQ)]+_ e

6. (z,y,t) =0, (g + ecosq, y, + €sing, t) —
= Ox (Zg, Yo, 1) —{—e[ cosq>+——smq)]+

etc. The omitted terms are of order e and higher. Substituting into
Equation (5.3) and taking into account that dl = edp, we obtain

ﬂ

(0x,°c08 @ + Tyy,°sin @) do |

(=

Sg Bk dS - . {u (xm Yo, )
0 o
+ v (%o, Yo, t)S (Tyx, "cOs @ + kaosm 9) do +
o

2n
a
+ a: S (0x,°cos®@ - Tx,° sin @ cos ) do +
0

2n
a
+ a; S (02, sin @ cos @ + T4y, °sin? ¢) do +
0
2n
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2n
— & % [(0x° cos @ + Txysin @) u° + (Toy 08 @ + 6,° sin @) v;°] dq)} dt
]
GxQ = ox (xoy yn t), PR (5‘4)

Terms which vanish when e vanishes have been omitted. In the sequel,
we shall need the integrals

2n 2n 2% 2n

S‘ sinq:cozq)dcp — % sin (pcoi;(pdq: - x sin ¢ czs"(p dgp = % cos«psi‘n‘tp dp =0
P Tio & "je by "o ; io
2% .
S costp — M 2sin® @ cos® @ dp = 2
o 2
) ra T+
2n
sin? @ cos? @ — M 2sint g 25
\ T =~ (5.5)
o rj‘v J
2n s . 2r 2 2n ‘g
sinfgeoste oo n sin @ cos® ¢ _§ cosgsin’e
) = =\ dp={ Z=25L 4o 0
ia M;(+M;) Tio 0 o

2 .
rie = cos® ¢ + M;?sin® ¢

It is easy to convince oneself that in Equation (5.4) the coefficients
of u(xo, Yo t) and v(xo, Yo, t) are equal to zero for all of the funda-
mental solutions. In addition, as a consequence of Equation (5.5), the
following integrals are zero for the first and second fundamental solu-

tions
2n 2
S (0x,°sin @ COS @ + Ty, ’sin® @) dp = S (Tux,"c0s® @ + 0y, °sin @ cos @) dp = 0

0 0

Conversely, the following integral vanishes for the third fundamental
solution.
an 27
S (0,,°cos® @ + T, “sin @ cos@) de = S (tvxa"sin ¢ cosp -+ 0,,°sin? @) dp =0

0 4

Let us carry out the calculation of the first fundamental solution in
more detail. Denoting the known quantities by D, we write

“BldS :'=—§(‘) {% 822§ (crx,"cos2 ¢ + 7, °sin @ cos Q) dg +

S, ] [
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on

g? \ (txyfsin @ cos ¢ -+ 6,° sin® @) dg —

0

dv
3yo

an
—g S lox (24, Yo 2) COS @ + Tay (Toy Yoo ) sin @l u,°dep — (5.6)

0

on
— & S [Ty (Zas Yo, 2) COS @ + 0y (4, Yo 8) sin @] 2° d‘P} dt = Dy + n; (8)
0

On the circle Le we have

2 .
cos® ¢ — M2 sin® @

o d o
6x° = 5 A MiIL;4; T (te— 1)
J=1 Tie
2
d _ ocos‘tp——M-” sin? @
ou = — g 2 M4 ——— (to—1) (5.7)
j=1 e
Ty, = EMHAOZqu;cosq;(t )
F==1 riw
From Hooke’'s law it follows that
d a d é
6z (Zos Yo» 1) :a%+(6“d)@% , Sy (Tg» Yoo t) = (€ — d)‘a}%'i”aéfg
8 é
T (20, Yoo 1) = d 55 + 57 ) (5.8)

We indicate next the values of u1° and v1° on L

u,° _—:.———-ZMA“""S“’(t -1, ?° :»-—EMB“““‘P(: —1)
j=1 Tie j=1 Tie
(5.9)
By the use of Equations (5.5) and (5.7) we obtain

[

K, =¢* \ (6x° cos® ¢ + 7, °sin g cos ¢)dop =

¢
2 2n

¢ cost M 2smz cos? in? 2
AP \ ¢ — ? ‘qu)+ S 2 sin tp:os @ dq)](t(,»-t) —
°

E]

H
“Mz\:

jo

= 2nd 2 (5.10)

M, +M Flt—0)
Analogous calculations give

2t
1,740
Kzze‘*'g( °sin @ cos ¢ + oy,° sin® g) dp = 2nd Z 1+M Lt,—t) (5.11)
0
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We turn now to the third and fourth terms of Fquation (5.6). We sepa-
rate and compute the coefficients of 3u/dx; and dv/dy,, which are con-
tained in these terms. On the basis of Equations (5.5), we obtain

2 AL,
Ky = 2yd 3"
i=1

c—d
r5a ezt ch](tO"“t) "
(5.1

2 ML, md a
Ky = 2nyd 21 TF A}j Lz — M3 + ch](tO” t)
Equation (5.6) can be rewritten in the form
ty-n(t)
V [Eat K)o+ (Kot K 32dt = Dot mu(e)  (5.13)
1 1) 3 2 ) 35 1e 1 .

0

Ve have
Byt Ky = 2“%!21 (1 .fiuj) {a jlféjzd +2 icg}d + “d)} (to—1) =
= 2nyda i ;:{—;’?-;23 (t,—1) = 2na (ty,— ) (5.14)
=1
Analogously
Ky Ky =202 é}i -ijj[(a—— Al;j’d) o, t ;((::?4?:3) ‘3‘](’0"‘ t) =
=
= 2ny 2 }3 I0; (8, — t) = 27 (c + d) (£, — 1) (5.15)

i=1

FEquation (5.13) takes on the form

tg—n(e)

2 S {a%+(c+d)§-’;](tn-t)dt=—.03+m(s)
[+

where n,(e) and e vanish simultaneously. Letting & tend to zero, we ob-
tain in the limit the first auxiliary equation corresponding to the first
fundamental solution

1
zug{ag—;+(c+d) %}(tnwz)dtzb, (5.16)
o

Here
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D, = ‘3§3 (@,°X + 0,°Y) dzdydt — &% (Teylhy® + 0y9,°) dzdt +
5,
+p&%(%%u1°+g—?-v1°——%u—::u-—-a—;;iv)dxdy (5.17)
Ss

In an analogous manner, by applying the Green-Volterra formula to the
required solution and the remaining fundamental solution, we obtain the
second and third auxiliary relationships

ty
d a

an[(c-{—d);ﬂ%—[—aaﬁ](to—t)dt:D,

- (5.18)
du dv
21\:Sd(a—3/;—-5;‘)-)(to—t)dt=l)3
where D, and D, are obtained from D, by a change of the functions u,°,
v,° to u2°, v,° and u,°, v3°, respectively. To complete the problem we
rewrite Equations (1.1) in the form

EegrerogledlbiE-ler-
Slero oo Ao

Differentiating Equations (5.17) and (5.18) with respect to the cor-
responding arguments, collecting terms, and integrating by parts, we ob-
tain, with the aid of Equations (5.19)

ty

’ 1
4 (To, Yor L) = o (To, Yo) + Uy (%o, Yo) to + ;S X (2o, Yo, ) (6o — ) d2 +
0
1D, oD,
+ 2np (azo + dyo ) (5.20)
ty
’ i
v (T You to) = Vo (Zo, Yo) + 770 (g, ¥o) 2o + n SY (Zoy Yo, 2) (Lo — &) dt +
0
1 (3D, 3Dy
+ 575 o — a30)

These formulas give the solution of the problem that has been posed
in closed form. Furthermore, they generalize the known result of Sobolev
[2] relating to the isotropic body. Analogous results may also be ob-
tained in a more general case of anisotropy - for example, in the case
of four elastic constants [3].
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6. Effect of point sources. We turn now to the investigation of
the effect of various sorts of sources of oscillation, in particular, to
the action of an instantaneous impulse on an unbounded anisotropic plane.
We assume that up to the onset of the disturbance the medium is at rest

2 (%, y) = v (z,y) =0, uo (2, y) = vy (2,y) =0 (6.1)

Then, in accordance with (5.20), we obtain for an unbounded plane

aD, oD,
U (2o, Yor 1) = 01 _e)

ty
1 ¢ .
X (@0 o ) G~y dt + o (G + 2D
P (6.2)
1 1 (oD
? (T Yoo 1) = ‘;Sy(xo, Yoo ) (o —2) dt +m(5_m1__%%s)
1]
where

Dy = _SSS(X,;,;' + Y9 dzdydt, w® =u"", u°= v (6.3)
T

llere T is a portion of the xyt space, bounded by the large surface of
the characteristic cone, constructed at the point (xo, Yo ty), and the
plane t = 0. Because of the singularities uko, vko, it is not possible
in (6.2) to directly insert the differentiation sign under the integra-
tion sign in the calculation of the derivatives of D, with respect to x,
and y,. However, in order to compute these derivatives, we may represent
D, in the form

Dy = — QSS (Xui® + Yo,°) dedydt — SS - Yo)dodydt  (6.4)

T-T7 T’¢

where T’ is a circular cylinder of radius € and height t;, - n(e). Hence,
in the first integral, the interior boundary of the region of integra-
tion does not depend on x, and y,. On the other hand, the external bound -
ary of this region can also be made independent of the indicated argu-
ments by virtue of the properties of the fundamental solutions. Hence,

in the differentiation of the first term of (6.4) with respect to x, and
yo the derivative may be inserted under the integral sign and (6.2) may
be rewritten in the form

ly

u (%4, Yo ¢ )=%SX($O, Yo t) (tp — L) dt — ——:z‘ SS ’.%1;10 a:;:)X'f*'
o
ty—m(e)
+(%:‘+%1%>Y]df”2—3?5 § [ai “X“’Od"“"a ngust’dﬂ“

0 3 Se
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+ %Sgyv;dc + aiyoggn; dc]dt

, ) " (6.5)
v (T Yoo to) = 5 | ¥ (Zr Yor §) o — )t — iz SS [(G 2y x4
0 l
+ (?ﬁi—%?o '.—Sm [azoSSXu2°dc—__.SSXusudo+

)Y Jar—
+angYv2°dc—-—g—Sngs°do]dt

We calculate next the terms containing an integral over o.. For small
e the functions u,°, v,° can be replaced by the estimates (4.6), (4.9),
and (4.11). This allows one to use certain results from the theory of the
logarithmic potential in the calculations. The functions

Iy Iy =Y e Ti= 4y (69)

are harmonic on the plane XY js where y; = M e On this plane we have

a‘z_ogg (2, ¥) In da:dy'—gg ° (2, 4 - "dmdy]

5o . e (6.7)
B o L — yo
ayjoglgp (z, y;) In r,jdx dy, S,S p° (x, y) . Rdzdy,
je je

o? ° 1 , 02 ° 1 o
a2 )P 0 dody; 45 ((e In 7 dndy, = — 200° (mo, 4s0) - (68)
Bje Sje
where o, is a region bounded by the ellipse x% + Yj 2/M 2 = ¢, We con-
sider t{ne
(ty — ) N, = r\gxu;dxdy + - Q\ Xugdz dy (6.9)
% O
On the basis of (4.6) and (4.11) we have
Ny = —cE MiAS | o SSXx—x"drdy+ S\ X2z ay) =
i

¢ S

a

e e ¥ Ajo[gﬂfi&X(y, M , >lll——d.13dy -+

j=1 o
i 5je
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2
02 Y 1 .
+ sgggSX(x, F’J ) t) In ;,—jdxdyj] = 21cX (g, Y, t) j§1 A7 = 20X (xg, Yo, t)
(6.10)

ﬂit

We next compute the sum

(to — ) Ny’ =a%ggwl°dzdy + a—z;SSvadxdy (6.11)

Ge O¢

We have
Ny ~§B°[ S}Y’—’—:—zj‘ﬂ‘dxdy M la-y-ggyi;’;éﬁdzdy]=

- éi MiBy [ SJS Y In 7 dedy; — 5—1‘:—8’8)’ In 7 dzdy,] = 0
(6.12)

Hence, by means of the results that have been obtained, we find after
a passage to the limit that

@ (g, Yo» o) = —-;%S;S[(";;o +20)X + (B2 + 32V ¥ |dzayr

Analogously we obtain

v (%o, Yo» ty) = — g,%gig[(g—s’;;—%})x + (%%—a;;:) Y]dxdydt
(6.13)

The problem of an applied concentrated impulse is now solved in the
same way as in the case of an isotropic medium. We consider the sequence
of functions X, and Y, . These are different from zero in a certain small
region T, whose dlmen51ons go to zero with increasing n. We require
further that for arbitrary n there should occur the equalities

\Sg X, (z, y, t) dzdydt = P, SrSSY,. (z,y, t) dzdydt = Q (6.14)

n n

where P and Q are independent of n. Correspondingly, we have a second
sequence

et st = g (2 5 o (B4 )]

n
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(6.15)
ot v 0= g (o 20 %o+ (5~ ) sy

n

Making use of the theorem of the mean and letting n tend to infinity,
we obtain, in the limit, the solution of the problem

_ P (0u® dug® Q (0n° ovg®
u(xo’ Yor t°) - —%(0130 + ) ) —2—@(330 + ayo)

(6.16)
; _ P auzo aus" ) _ ’_()— (6v3° _ avae )
v (Tgs Yoo Lo) = —Tﬁp( dyo 0% 2np\dye Oz

where all of the functions on the right are to be taken at x =y =t = 0.
If, for example, Q = 0, then by using the values of u,°, v,° we find

P a wek Y
u (Zo» Yor fo) = Snp 21 1‘01, §9a3)
=1
(6.17)
2
‘P ice.x. 1) .0
2 (To Yoo o) = — 35 2 Re—5— (Ajoq; + Bj0g;)
=1

where one should take into consideration the equations
8 = to — 0% + A; () ¥ = 0, Oy=—=zo+ ¥;(0;) ¥,

It is easy to verify directly that the functions (6.17) satisfy the
equations of motion in the absence of body forces. Hence they give the
solution of the problem of the action of an instantaneous impulse
applied to an anisotropic plane along the direction of the x-axis. That
is, Formulas (6.16) give the solution of the problem of the action of an
instantaneous impulse, with components P and Q, applied at the origin of
the reference axes on an anisotropic plane.

It is easy to show that the inequality ¢ < a - d is not essential.
However, these constants should satisfy the inequality ¢ < a + d. The
latter is the condition of hyperbolicity of the system of Equations
(1.1). Setting ¢ = a - d, we arrive at the solution for the isotropic
medium which was found by Sobolev.
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