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1. Fornulation of the problem. ive seek a regular solution, i.e. 
a solution that is continuous up to second order derivatives of the equa- 
tions of motion [l] 

(1.1) 

at points in an anisotropic halfplane y>O under the following initial 
conditions 

and the following boundary conditions: 

The right sides of these equations contain given functions. 

2. The Green-Volterra formula. Jn the general case of anisotropy 
we have the Green-x’olterra formula 
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Here ulr tll is a solution of Equations (1.1) corresponding to the 

body forces Xl, YI, while the solution uZJ vZ corresponds to the body 

forces X,, Y,; Tdenotes an arbitrary volume in the xyt space which is 

bounded by the surface S with interior normal n 

P (u, @) = a, cos (m) + z,, cos (ny) - p at SOS (at) 
(2.2) 

Q (% 4 = z,, cos (ns) -f- a, cos (ny) - p $ cos (nt) 

This formula remains valid even when one of the solutions has a true 

strong discontinuity [21. 

3. Fundamental solutions. We shall construct some special solu- 

tions of the homogeneous Equations (1.1). ‘Ihese will be nonzero within 

a characteristic cone whose vertex is at the point (x0, y,,, t,) and will 
have the required singularity on its axis n = x,,, y = y,,. We call them 

fundamental solutions. Let us introduce the functions 

as - (: - d)* ’ 

4j = a0,t + dljr 

---- 1 7 = 

Between ftj and hi there exists the relation 

&jLZj - t0j’hj’ = 0 LG = dtlj8 + a;lr” - 1 

6j = to - t - (5 -‘%I) 8 + (Y - 90) h = 0 

We specify incident disturbances in the form 

(3.2) 

U&O’ = i RS i r CEhj (E) 0; (&) dE, vkoo = i Re i f Llj (E) o;(t) d$ (3.3) 

j=i j=l 

where 

O* 

O&j = 

L*j - eh; hj “j”o*j’+ L*I~tj” 

Fj” 
0~ fk= f, 2). ,~j** = - B 

Pi” 

Fj” = C%ja (Ojalo~jo + lj*OG”) + Lej - Chj* (3.4) 

Forming the solutions [31 for the reflected disturbances under the 

condition that the boundary is stress free, and superposing these solu- 

tions on the corresponding incident solutions, we obtain the fundamental 
solutions uLo, vko. These are nonzero in the interior of a character- 

istic cone and zero on its boundary and in its exterior. Upon passage 
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through the pertinent characteristic surface, lying either within the 
cone mentioned above or comprising its surface, the first derivatives of 
these solutions suffer a discontinuity. However, as is easily shown, the 
kinematic and dynamic conditions of compatibility are satisfied. 

4. Estimate of the fundamental solutions near the axis of 
the characteristic cone. To make this estimate, we show that it is 
sufficient to estimate the function (3.3) for large values of %i, since 
only incident disturbances have singularities on the axis of the cone. 
Taking into account the branch of hi to be chosen for c ==z a - d IIll, and 
writing out only the main terms, we obtain 

whereby 

M,M, = 1, M12$M$+=-$, (a - Mj’d) (d - Mj%)+ e2Mj2 = O (4.2) 

From (3.2) we find 

6, = 
x‘ - iMjy’ 

q 
t’, 2’ ==s z - x0, y’ = y - 7&j, t’ = t, - t 

For large ej we readily obtain 

02jo =t - 

IJj=a+(C-d)Mj* 
(4.4) 

(i = f, 2) 

Hence 

lim (%jsCLQjo+ hj*W*j”)= 0, %j-+ 00 

and for large ej the main parts of the functions ekjo and ekjoo coincide. 
Now it is easy to estimate the fundamental solutions. We obtain 

2 

@lo = - ~2 MjAj” Re %i, VI0 = -i J3j" Re if+, 13j” = ?I’$ (4.5) 
j=l j=l 
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It is also necessary to estimate the derivatives for large 0j’ l!sing 
Equations (3.3) and (4.3) we find 

(4.7) 

‘The same result may he obtained by straightforward differentiation of 
the expression for uIo with respect to x. The remaining derivatives can 
be estimated in an analogous manner. Omitting the details of the calcu- 
lations, we give the final results of the estimates of the solutions and 
the corresponding stresses. 

a) First fundamental solution. Formulas (4.6) are supplemented by 

b) Second fundamental solution 

2 

u2* 3= - ~2 Mj-‘Aj I’I’ 
r’2 ’ 

v** = - j&f,-‘&’ y’t’ 
j=l J j=l i; 

(4-Q 

(4.9) 

The stresses are obtained in the form 

(4.10) 

c) Third fundamental solution 

u30=-c Mj A jO f$ , ~8’ = i Mj-‘Bj’ KJs (4.11) 
j=l I j=i ‘j 

For the stresses we obtain 

(4.12) 

The main parts are indicated in all of the formulas. 
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5. Solution of the Cauehy problem for the halfplane. TO 
solve this problem, we apply the Green-Volterra formula to the sought 

solution and to one of the fundamental solutions Uk”, Vk”’ For the region 

of integration we take a portion of the space 

which is bounded on the one side by the sur- 

face S’ of a characteristic cone whose vertex 

is at the point (x,, ya, to) and, on the other 

side (see the figure), by a portion S, of the 

plane y = 0, and a portion S, of the plane 

t = 0, and finally, by a portion of the 

cylindrical surface S, of radius E that cuts 

out the axis of the cone. It is to be under- 

stood that S’ is that portion of the surface 

of the cone that corresponds to a variation 

of 0, in the interval - l/da < 0, < l/da. It 

is just on this portion that all of the funda- 

mental solutions vanish. On the other hand, taking into consideration 

that the latter correspond to zero body-force solutions, we obtain 

where the index a indicates that at present (up to passage to the limit), 

the portion of the aforementioned surfaces that depend on E Sre used. ‘Ihe 

eXpreSSiOnS for Bk have the form 

B*- ( 
&4,o 

u$bs (nx) + Zxy*%OS (ny) - pa, cos(~t) u + 
1 

+ (~,,Ocos(ns) + $/;cos (lay) - p =C$-eos(,t)) v- 

- 
( \ 

a, cos (nx) + 2, cos (ray) - pg cos (R&t)) l&k0 - (5.2) 

- 
f 
7q co9 (nx) + 6, cos (ng) - p g cos flat)) VkO 

All of the integrals in Formula (5.1) are known, with the exception 

of the integral over S,. lhe integral over S’s is zero as a consequence 

of the fact that the kinematic and dynamic compatibility conditions are 

satisfied for the solutions uIo and uto. The integrals over S,, and S,, 
are known by virtue of the initial and boundary conditions. We next show 
that the integral over Sa, in the lirait as a - 0, is equal to a certain 
linear combination of the derivatives of the unknown functions u and v. 

On the surface S, we have 



The elastic anisotropic halfplane 1359 

cos (rat) = 0, cos (nz) = $- ) cos (ny) = -$ , rf2 = 5’9 + $2 = &l 

setting x’ = E cos 9, y’ = E sin Q, we obtain 

k-n w 
BkdS = 

\ 11 
[ @XkO COS cp + Gykosin cp) U + (Zyxkocos cp + UykoSin rp) u + 

6 i, 

+ kh COS cp + Gu sin cp) &to - (h cos ‘p -i- uy sin cp) vk’l dl 
I 

dt (5.3) 

where q(~) and E vanish together, and LE is a circle of radius E. 

Since the unknown solution is regular, we have, for example, 

u (z, y, t) = u (x0 + E cos y, y. + E sin ‘f, t) = 

=a(z,,y,,t)+E-~~os~+~sinp]+... 
1 

ux (z, y, t) = ur (2, + 8 cos cp, y. + E sin cp, t) z- 

= ux (20, $!o, t) + E zsincp +... 1 
etc. The omitted terms are of order ~~ and higher. Substituting into 
Equation (5.3) and taking into account that dl = E+, we obtain 

\\ Bk ds = “in e {u (zo, yo, t) 7 (G~COS q + rxy~sin cp) dq + 

Sk ii 6 

+ v (% Yo, tl p (%~~cos cp + u,isincp) dcp + 
0 

2n 

+ 
824 

az” cl s 
(%k°COs2cp i- zxyo sin cp coscp) dcp + 

0 
2x 

+ au8 
aY0 s 

(&,“sin cp cos cp + %xykosin2 cp) dq + 

0 
2x 

i- -$y 8 \ (%~~~Cos~ cp -k uykosin tp cos cp) dq + 

0 
276 

+ au 8 
aYkl s 

(%,xkosin cp cos cp + uyhosin’ cp) dq - 

0 
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we 

- 8 \ [@x0 COS Cp + ?x,,‘Sin Cp) ukO + (rxll COS Cp + Uyo sin cp) ufi’j dq] dt 
Ii 

G 
0 

=%(h,yO tj,... (5.4) 

Terms which vanish when E vanishes have been omitted. In the sequel, 
shall need the integrals 

2% 2x 2% 2x 

s 

l sin rpcosqdq~ = * 

\ 
sin cp coscpctg, 

ZZZ 
r.2 

0 ‘jG c 
sin rp co9 qr 

4 
dq = 

0 N i; ‘ii, 
c 

cos cp sins g, 
drp = 0 

6 ‘Z 

2s 

5 cos4 fp - Mj2 sin2 4 g, ~09 9, da,= ” 

0 ‘jv 
(1 + MjP 

2n 

s 

sin2 cp CO@ 9 - Mi2 sin4 q 

r.4 dT= (5.5) 
0 3’p 

It is easy to convince oneself that in Equation (5.4) the coefficients 

of n(x,,, yo, t) and v(no, y,,, t) are equal to zero for all of the funda- 
mental solutions. In addition, as a consequence of Fquation (5.5)‘ the 
following integrals are zero for the first and second f~d~ental solu- 
tions 

2% 

s 
(a,,“sin Q, cos fp + zwk ‘sin2 tp) drp = ‘{ (z~~~%os~ cp + uv&%in cp cos cp) dcp = 0 

0 

(k =U*, 2) 

Conversely, the following integral vanishes for the third fundamental 
solution. 

an 

s (~x*ocos2 9 + rxy, “sin q coscp) dcp = 1 (zyx3%in cp costp + q,,0sin2 cp) dtp = 0 

0 U 

Let us carry out the calculation of the first fundamental solution in 
more detail. Ibnoting the known quantities by Dls, we write 
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On the circle L, we have 

(5.7) 

a x?4’ dli = F j=l 
j,f.n.A.e2 sin 4, ~0s rp 

I 1 1 4 &I - 0 
‘j9 

From Hcsoke’s law it follows that 

ox(5a,Yort)=u~~+(c-d)~~, 59 (rip y,, t) = (c - 4 E$_Ua& 
G, (G Y,, tf = d (& + &) (5.8) 

We indicate next the values of ulo and ulo on L, 

eiy the use of Equations (5.5) and (5.7) we obtain 

Analogous calculations give 
2x 

K 2 = E2 s 6 
2 ‘M .-wjAj” 

,,%A cp cos cp + q,,* sin2 ‘p) drp = 2nd ~--J- 
j+ ’ + Mj (43 - t) (5.11) 

0 
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We turn now to the third and fourth terms of Equation (5.6). We sepa- 
rate and compute the coefficients of &,&I, and &Jay,, which are con- 
tained in these terms. On the basis of Equations (5.51, WC obtailt 

(5.12) 

Equation (5.6) can be rewritten in the form 

We have 

diIj 

a - J.fj2d + 

= Zi-c~du i 
n. 

-h (to 
j=~‘- j 

- t) = 2na (to - t) (5.14) 

Analogously 

=-2&i rIj(C,--a) = 2n (c + d) (to - t) (5.15) 
j=l 

Equation (5.13) takes on the form 

where qI(s) and E vanish si~ltan~~l~. Letting E tend to zero, we ob- 
tain in the limit the first auxiliary equation corresponding to the first 
fundamental solution 

&zf’ u~+(c+d$&--t)dt=4 SC 
0 

(5.16) 

Here 
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(5.17) 

In an analogous manner, by applying the Green-Volterra formula to the 
required solution and the remaining fundamental solution, we obtain the 
second and third auxiliary relationships 

2n*’ 
S[ 

(c+ d)&+ a a$] (t, - t) dt = Da 
0 

(5.18) 

0 

where D, and D 
O to uzo, 

are obtained from D, by a change of the functions ulO, 

VI v* d and u30, vSo, respectively. To complete the problem we 
rewrite Equations (1.1) in the form 

Differentiating Fquations (5.17) and (5.18) with respect to the cor- 
responding arguments, collecting terms, and integrating by parts, we ob- 
tain, with the aid of Equations (5.19) 

u @09 Yo* to) = uo (% Yo) + uo’ (501 Yo) to + +5x (50, yo, t) (to - t) dt + 
0 

+2&(as+$) (5.20) 

v h Yo* 43) = vo 6% Yo) + v’o (209 Yo) to + $ \Y (501 Yo, q (to - t) dt + 
0 

+ ‘(EL2) 

2nP allo 

These formulas give the solution of the problem that has been posed 
in closed form. Furthermore, they generalize the known result of Sobolev 
k?] relating to th e isotropic body. Analogous results may also be ob- 
tained in a more general case of anisotropy - for example, in the case 
of four elastic constants [3] . 
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6. Effect of point sources. We turn now to the investigation of 

the effect of various sorts of sources of oscillation, in particular, to 

the action of an instantaneous impulse on an unbounded anisotropic plane. 

Fe assume that up to the onset of the disturbance the medium is at rest 

uo ($1 Y) = vo (x9 Y) = 09 u’o (x9 Y) = 8’0 (4 Y) = 0 (6.1) 

Then, in accordance with (S. 20), we obtain for an unbounded plane 

where 

Dk = - 
sss 

(Xuko + Yvko) dxdy dt, ulr’= = uk“‘, vko = vkoO (6.3) 
T 

I!ere T is a portion of the xyt space, bounded by the large surface of 

the characteristic cone, constructed at the point (n,, yO, t,), and the 

plane t = 0. Because of the singularities uko, vkoj It is not possible 

in (6.2) to directly insert the differentiation sign under the integra- 

tion sign in the calculation of the derivatives of nk with respect to x0 

and yO. IIowever, in order to compute these derivatives, we may represent 

D, in the form 

& = - \\s ( Xuko + Yv,$‘) dxdydt - (A-Q” + Y2)h-O) dx dy dt (6.4) 
T’LT’, 

where T’ E is a circular cylinder of radius E and height t0 - q(~) . I!ence, 

in the first integral, the interior boundary of the region of integra- 

tion does not depend on x,, and yO. (3n the other hand, the external bound- 

ary of this region can also be made independent of the indicated argu- 

ments by virtue of the properties of the fundamental solutions. Hence, 

in the differentiation of the first term of (6.4) with respect to x0 and 

y0 the derivative may be inserted under the integral sign and (6.2) may 

be rewritten in t!le form 

‘” 

u (20, yo, to) = $ 1 * x (x0, yo, t) (to - t) dTY - 2&- s s \ [(tg + c$) x 4 

0 T-T’, 

+($$+f$)Y]dr-& azo. a Xu,“da+&\\Xu,“ds+ 
Q GE at 
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(6.5) 
t. 

u (x0, y,, t,) = + Y (x0, Y,, t) (to - t) dt - & 5 sss K aua~ aus0 - - x x + 
aY0 1 

0 T-T, 

We calculate next the terms containing an integral over uE. For small 
E the functions uko, vko can be replaced by the estimates (4.6), (4.9), 
and (4.11). This allows one to use certain results from the theory of the 
logarithmic potential in the calculations. ‘Ihe functions 

x’ I r’2 
I’ 

y; / r?, yi' = yj - yio, ‘I; = 2’2 f y’; (6.6) 

are harmonic on the plane xyj, where yj = Mjy. On this plane we have 

a 
ax ss P” (‘9 Yj) In 

Ojz 

$ dx dyi = \ 1 P” (X, yi) x2 dx dyi 

Ojr 3 

a (6.7) 

aYjo 
l\p’(x, yj)ln+dxdyj= l\p’(x, yj) ydxdyj 
Oje pis 3 

a= -I 

ss 
-1 

a22" ss p%?Tdxdyi+-$ p” In 7, dz dy, = - 2xp” (x0, yj0) (6.8) 

Oj.5 
I 10 

ajr 
J 

where CT. 

h’ 
is a region bounded by the ellipse x2 + yj2/hfj 2 = e2. We con- 

sider t e sum 

Xu,“dxdy + & \ \ Xu3’dx dy 
. . 

% as 

On the basis of (4.6) and (4.11) we have 

(6.9) 
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+-$\\X(x,~,t)ln~dxdyj]=2neX(zo,Yo, t,j ~iO=2Jw%~Yo*t) 
Ojc 

(6.10) 
We next compute the sum 

(to - t)Nr’ =&\\Yvl”dxdy + &llYv,‘dxdy w 
OL % 

(6.11) 

We have 

j=l 

Mj-‘Bc[&SSY Intdxdyj-&[[Y lntdxdyj]=O 

Ojc *jc 
(6.12) 

Hence, by means of the results that have been obtained, we find after 

a passage to the limit that 

Analogously we obtain 

2, (x0, Yo, to) = - s& SSSK aus0 w-$$)X+(!$-g)Y]dxdydt 

T 
(6.13) 

The problem of an applied concentrated impulse is now solved in the 

same way as in the case of an isotropic medium. We consider the sequence 

of functions X,, and Y,. These are different from zero in a certain small 

region T, whose dimensions go to zero with increasing n. b require 

further that for arbitrary n there should occur the equalities 

US X, (x, y, t) dxdydt = P, 
w 

Y, (x, y, t) dxdydt = Q (6.14j 

-r, n 

where P and Q are independent of n. Correspondingly, we have a second 
sequence 

un (x0, yo, 4y) = - kp QSK &4,o 

‘T* 
azof f?$)X,a+($$+z)Y”]dxdydt 
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(6.15) 

Making use of the theorem of the mean and letting n tend to infinity, 
we obtain, in the limit, the solution of the problem 

u (50, Yo, to) = 
P &lo -w 

( 
-+$.J-&(Z+f$) 

2np ax0 

P &k1o 
zJ (50’ Yo, GJ) = - & ( 

aye _?g)__&!&!w) w6) 

where all of the functions on the right are to be taken at n = y = t = 0. 

If, for example, Q = 0, then by using the values of uko, vVko we find 

p iRe i&A. 

u (Zor Yo9 to) = 25 . 
1=1 

* (OjOl;” - hj02;‘) 

2 
i&J.. 

V (20, ~0, to) = - & 2 Re + (Ajo,; + W3;‘) 
j=l j 

where one should take into consideration the equations 

&j = to - BjSo + hj (ej) y* = 0, 6’J = - 20 + X’j (ej) YO 

It is easy to verify directly that the functions (6.17) satisfy 
equations of motion in the absence of body forces. Hence they give 
solution of the problem of the action of an instantaneous impulse 
applied to an anisotropic plane along the direction of the x-axis. 
is, Formulas (6.16) give the solution of the problem of the action 

the 

the 

That 

of an 
instantaneous impulse, with components P and Q, applied at the origin of 
the reference axes on an anisotropic plane. 

(6.17) 

It is easy to show that the inequality c < a - d is not essential. 
However, these constants should satisfy the inequality c < a t d. ‘he 
latter is the condition of hyperbolicity of the system of Equations 
(1.1). Setting c = a - d, we arrive at the solution for the isotropic 
medium which was found by Sobolev. 
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